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Presentation outline 

• Overview of different radiative transfer models 

• Description of the Principal Component-based Radiative Transfer Model 

(PCRTM) 

– Why PCRTM and how does it work? 

– PCRTM for CLARREO IR: 0.1, 0.25, 0.5, 1.0, 2.0 cm-1 

– PCRTM for RS:  1 cm-1 spectral resolution 

– Examples of PCRTM application for CLARREO and other sensors 

– Retrieving atmospheric changes from hyperspectral data using PCRTM 

• Summary and Conclusions 
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Overview of Different Fast RT Models 
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• Difficult to model channel radiances or reflectance: 

 

 

• LBL calculation of monochromatic layer transmittances or TOA radiances is 

very time consuming 

− Million mono RT calculations needed 

• Convolving monochromatic radiances with Sensor Response Function (SRF) is 

also time consuming 

− Better to do that in the fast RT model 

• The Beer’s Law is no longer valid after convolving with SRF: 

– It’s difficult to handle inhomogeneous path and multiple gases 
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Overview of Different Fast RT Models 

• Correlated-K Distribution (CKD) 

– Take advantage of the fact that the integrated T or R do not depend on the order of 

monochromatic frequencies 

– Re-order the monochromatic transmittance (g- mapping) 

• Remove redundant information 

• Channel transmittance is a linear combination of a few monochromatic T 

• Weights obtained by quadrature of the smooth g function 

– Only approximate when extending to multiple layers with overlapping molecular absorptions 

 

 

 

• Exponential Sum Fitting of Transmittance (ESFT) 
– wi and the spectral location of Ti obtained by a selection/regression process 

– Same shortcoming as CKD 

– A lot of research effort on improving overlapping gases and inhomogeneous atmosphere in 
the past few decades 
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• Fast Transmittance Models 

– Effective transmittance is a non-linear function of atmospheric parameters 

 

 

 

 

– It has been widely used by various satellite sensors  

– The effective optical depth at a particular layer depends on the properties above that layer 

• Polychromatic RT used 

• Hard to change observation altitude 

– Model depends on training 

• Non-physical parameterization 

• Optimal Spectral Sampling (OSS) 

– approximates channel radiances (or transmittances ) according to: 

 

 

– Similar to frequency sampling method or radiance sampling method  

– Spectral locations/weighting coefficients are obtained through a selection/regression 
process similar to ESFT 

– RT is done monochromatically 

– Physical parameterization and accurate 
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• Calculates channel radiances (or transmittances ) by linearly combine a set of pre-stored 
EOF: 

 

 

• EOFs  are obtained by performing a Principal Component Analysis (PCA) of channel 
radiances under a wide range of atmospheric and observation conditions 

– Only dozens to hundreds EOFs needed 

• Coefficient Ci are predicted from a few monochromatic radiances 

– The relationship is derived from the properties of eigenvectors and SRF 

– Ci can be treated as super channels which contain all the essential information on a spectrum 

• Treats the whole spectra as a whole 

– No need to perform redundant calculations 

– Only a few hundred monochromatic calculations are needed 

– Faster than channel-based RT models 

– Physical parameterization and accurate relative to LBL 

• Channel radiance can be calculated by a simple EOF transformation 

• Jacobian can be calculated analytically 
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Why PCRTM ? 

• Channel-based fast radiative transfer models may be too slow for large data volume 

– Take long time to simulate instantaneous CLARREO spectra for OSSE study 

• Hyperspectral data are spectrally correlated 

– Only the first ~50-100 leading eigenvectors are used for optimal fingerprinting 

– Leading EOFs captures all essential information of thousands of channels 

– PCA has been used to reduce instrument noise and to compress spectra 

• PCRTM parameterization is physical-based fast model 

– Channel-to-channel spectral correlations are captured by eigenvectors  

– Reduce dimensionality of original spectrum by a factor of 10-90 

– Radiative transfer done monochromatically at very few frequencies 

– Very accurate relative to line-by-line (LBL) RT model ( < 0.05K or 0.05%)   

– 3-4 orders of magnitude faster than LBL RT models 

– A factor of 2-100 times faster than channel-based RT models 

– Provide radiative kernel needed for retrievals and climate studies 

 

NAST-I Spectral 

Band 

Number of 

Channels 

No. of RT Calc. for All 

NAST Channels 

Predictors per 

Channel 

PCRTM 8632 310-900 0.04-0.1 

PFAST 8632 8632 ~40 

OSS 8632 22316 2.59 
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How does PCRTM work? 

Flow diagram of the PCRTM forward model 

Data 

Input PCRTM  

Parameters 

(OD, PCs, cloud 

Parameters, etc.) 

Generate predictors by 

Performing mono 

 RT calculations 
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• Monochromatic RT assures Beer’s law apply 

• RT needs to be done at minimum number of frequencies 

• Orders of magnitude smaller than LBL 
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Training of CLARREO PCRTM in IR 

• 0.1 cm-1, 0.25 cm-1, 0.5 cm-1, 1.0 cm-1, and 2.0 cm-1 

• 0.1 cm-1 model can be used to generate lower spectral 

resolution instrument forward models 

• Reduce >1 million mono RT to < 1000 

• EOF and mono numbers decrease with resolution 
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Typical accuracy of the forward model ( < 0.03 K 

relative to LBL) 

• Bias error relative to LBL is typically less than 0.002  

• The PDF of errors at different frequencies are Gaussian 

distribution 

• RMS error less than 0.03K 

• Large ensemble of spectra used in the training 

• Independent validations perform well 
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Training PCRTM in Solar (O2 A-band at OCO and 

SCIAMACHY spectral resolution) 
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• Model reflectance of R-branch of O2 A-band 

• OCO spectral resolution (0.045 nm) 

• 5-6 EOF, 7 Mono needed (out of 12000 from LBL) 

• Maximum RMS error < 2.32 x 10-5 for 7500 sample 
• Various clouds 

• Aerosols 

• Ocean and various land surface types 

• Various atmospheric profiles 

• Bias error close to zero 
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Training PCRTM in RS from 0.3 to 2.5 μm 

• MODTRAN used as the RT model for 
training  

– Preliminary training with limited cases 

– Ocean surface only 

– water clouds only 

– 1-17 Ks are used for gas absorptions 
and the code is modified to output 
the radiances at each k-node and the 
weighted-average 

– 12 stream DISORT calculations 

• Spectral range: 0.3-2.5 μm  with 
Δν=1cm-1 

– Total of 259029 monochromatic RT 
performed per spectrum 

– The goal is to reduce the points to 
1000-2000 

– Will train PCRTM at 1 cm-1 resolution 

– Other spectral resolution can be 
derived from this high spectral 
resolution PCRTM 

– Much less mono and PC needed for 
lower resolution spectra expected 

• The following parameters are 

randomly varied in the MODTRAN 

runs 

11 
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Preliminary results for all spectral regions 
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The fitting accuracy has been validated using 

independent data sets 
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Preliminary results for all spectral regions (0.3-2.5 mm) 

• Current channel number = 23531, need 771 predictors (a factor of 340 less RT 
computations relative to MODTRAN) 

• 4 nm spectral resolution instrument will result in less than 1100 channels (2 nm sampling) 

• 300 - 500 mono RT expected for CLARREO type of instrument (520-860 fold speed-up 
relative to MODTRAN) 
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Band No. Range 

(mm) 

Channel 

No. 

Mono No. Mono No. 

(reduced) 

EOF No. 

1 2.063-2.503 853 14518 84 35 

2 1.623-2.062 1313 22372 153 90 

3 0.981-1.622 4038 63315 307 265 

4 0.626-0.980 5780 82789 172 85 

5 0.300-0.625 17327 76226 55 20 
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Application of PCRTM to real data and to CLARREO 

studies 

• PCRTM has been validated using real hyperspectral data 

– IASI on Metop satellite 

– NAST-I airborne hyperspectral instrument 

– AIRS on Aqua satellite 

– Both forward model and retrieval applications 

• PCRTM has been used for CLARREO studies 

– Orbital data simulations 

– Radiative kernel calculations 

– Instrument trade studies and Information content analysis 

– Filling spectra gaps due to limited instrument spectral range 

– Relating TOA radiance to TOA flux 

– Detecting atmospheric changes using simulated CLARREO data 

• PCRTM has been incorporated into a retrieval algorithm based on Optimal 

Estimation method 

– Retrieval done in EOF space (computationally efficient) 

– T, H2O, CO2, CO, O3, CH4, N2O, cloud optical depth, cloud height, cloud phase, cloud 

particle size, surface emissivity, and surface skin temperature are retrieved 

simultaneously 

– Retrieval products are consistent with the measurement radiances via PCRTM 

– Been applied to AIRS, NAST-I, and IASI (ready to be applied to CrIS and CLARREO) 

15 
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Example PCRTM model has been validated using 

IASI, NAST-I and AIRS observation data 

• Observed and calculated NAST-I spectrum 

• Expanded plots of observed and PCRTM 

calculated IASI spectra 

• Comparison of observed and calculated IASI 

spectra 

• Blue line is IASI noise 

• Red line is the difference between IASI 

observation and PCRTM calculations 

• An example of Observe vs 

forward model calculated AIRS 

spectra 

• Temperature, H2O and O3 

profiles are taking from ECMWF 

model 

•  Spikes due to AIRS popping 

noise not completely removed 

•  Ozone truth has poor quality 
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Example of Jacobian from PCRTM 

• Comparison of ozone 

Jacobian from different 

models (Saunders et al. 

JGR, 2006) 

 

 

 

 

 

 

 

 

 

 

 

• Temperature Jacobian 

calculated from PCRTM 

(see Brian’s talk for 

details) 
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Example of PCRTM cloud modeling and retrieval in 

thermal infrared spectral region 
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• Cloud effective transmissivity and reflectivity calculated using DISORT 

– Dependence on particle size, optical depth, observation angles are captured 

– Orders of magnitude faster compared to running DISORT 

• PCRTM retrieved cloud top agrees well with CALIPSO data 
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Example of predicting the 0-200 cm-1 spectral region using 

CLARREO spectra (200-2000 cm-1) 

• PCRTM forward model used to predict the missing CLARREO spectral region 

– Fast and easy 

• Calculated the mean and error in the mean for integrals for each atmosphere 

– Errors less than 0.026 K 

– Included instrument error  

• The simulated measurements are systematically low by a few parts in 1e-3.  

– Due to the random sampling error which affects the responsivity 

– Difference in radiative transfer model (Dave Kratz’s LBL model used for truth simulation) 

Spectral 

Range (cm-1) 

Integrals 

from truth  

(K) 

Integral from 

fitted (K) 

Error (K) 

0-50 0.0729 0.0680 +/- 0.0006  

50-200 2.9814 2.9106 +/- 0.026  

200-2000 89.888 89.802 +/- 0.03  

0-2000 92.942 92.780 +/- 0.039  

19 
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Ways to explore information content of CLARREO 

hyperspectral data 

• Invert each instantaneous spectrum first 

– Obtain atmospheric, cloud, and surface properties 

– Study zonal/global mean of the retrieved products 

– Perform time series analysis (taking into account of natural variability) 

– Retrieval done in EOF space 

 

 

• Perform radiance averaging first 

– Perform retrieval of individual climate variables using spectral fingerprinting 

method 

– Less sensitive to instantaneous instrument noise 

– All retrieval done in EOF space 
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Example of retrieved atmospheric parameters from 

IASI data 

• 3 movies showing IASI temperature and 

moisture cross-sections on 11/04/2007 over 

Anglet France 
– T and H2O as a function of altitude 

– T and H2O along satellite track 

– T and H2O x-track 

– Note fine atmospheric features capture 

– Coherent spatial features 

– Even though the retrieval is done pixel by pixel 
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Comparison of PCRTM retrieved temperature and 

moisture profiles with ECMWF 

Statistics (101 levels , no vertical averaging) 
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Simulation/retrieval stud of small atmospheric 

changes 
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• 1000 atmospheric profiles selected 

• 1000 radiance spectra simulated using 

PCRTM  

• Perturb 1000 atmospheric profiles 
– Perturb temperature by 0.15 K above 200 mb 

– Perturb temperature by 0.31 K below 200 mb 

– Perturb surface skin temperature by 0.27 K 

– Perturb water by 3.16 % above 200 mb 

– Perturb water by 1.63% below 200 mb 

• Computes new radiances using perturbed 

profiles 

• Perform retrieval using 2000 spectra 
– Compute atmospheric profile differences 

– Plot the averaged result 

• Perform average of the difference spectra 
– Perform optimal fingerprinting using averaged 

radiance spectrum 
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Summary and Conclusions 

• Forward model is a key component in analysing hyperspectral data 
– End-to-end sensor trade studies 

– Realistic global long term data simulations and OSSE experiment 

– Satellite data analysis and data assimilations 

• PCRTM is a useful tool specific for hyperspectral data with thousands of channels 
– PCRTM compresses thousands of spectral channels into few hundred EOFs 

– 3-4 orders of magnitude faster than Line-by-line models 

– 2-100 times faster than traditional forward model 

– Very accurate relative LBL models 

– Multiple scattering cloud calculations included 

– Model has been developed for AIRS, NAST,IASI, CLARREO, and CrIS 

– The method has been extended to UV-VIS-near IR spectral region 

• More work needed 
– User-friendly PCRTM code 

– More forward model training in the solar spectral region 

– Continue to explore CLARREO information using both instantaneous and averaged 
spectra to derive climate related quantities 

• Using simulated spectral from satellite and model products 

• Using IASI as proxy data 

 

 


